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Abstract--Flow visualization experiments were used to establish the mechanism of boiling on enhanced 
surfaces having sub-surface tunnels with surface pores. Based on this mechanism, a semi-analytical model 
for nucleate boiling is proposed. The model is validated for data covering a range of tunnel and pore 
dimensio:as and supporting bubble dynamics data. The model assumes the tunnel is vapor filled, except 
liquid menisci in the corners. By analyzing meniscus thickness, bubble departure diameter, and bubble 
growth, this dynamic model accounts for the temporal evaporation rate variation inside tunnels, and the 
dynamic nature of convection heat transfer outside the tunnels. The model uses two empirical constants. 
It predicts the heat transfer coefficient for the R-11, R-123, R-134a and R-22 pool boiling data with 
MSD = 20%. It also predicts bubble departure diameter and bubble frequency with MSD = 7 and 15%, 

respectively. © 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Nucleate boiling: is an important mode of heat transfer. 
Although commercially made enhanced boiling sur- 
faces are used in the refrigeration and process indus- 
tries, there is considerable lack of understanding of 
the boiling mechanism, and of knowledge to predict 
the effect of the geometric parameters and fluid 
properties on performance. The present work is part 
of a major study directed at providing the missing 
information. Chien and Webb [1, 2] and Chien [3] 
have performed series of tests to determine the effects 
of geometric parameters for the boiling performance 
of a 'structured' enhanced surface. This geometry con- 
sists of a finned tube whose fins are covered by a foil 
having small pores that allow liquid inlet and vapor 
release. The liquid-vapor conditions in the tunnel, 
and bubble growth above the surface pore were estab- 
lished by bubble dynamic experiments (Chien and 
Webb [4]) and visualization experiments (Chien and 
Webb [5]) using a high speed photographic system. 
Based on the data and observations from these exper- 
iments, the authors propose a semi-analytical model 
for boiling on structured surfaces. 

Prior to the present work, Nakayama et al. [6] and 
Haider [7] also proposed mechanistically based ana- 
lytical models t,o predict boiling performance of struc- 
tured enhanced surfaces. Nakayama et  al. [6] pro- 
posed that three possible boiling mechanisms may 
exist. These are the 'flooded mode', the 'suction--evap- 
oration mode', and the 'dried-up mode'. The Nakay- 
ama et al. [6] model assumed evaporation on menisci 
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in the corners of the tunnel (suction-evaporation 
mode). The Haider [7] model is based on the 'flooded 
mode,' which assumes alternate zones of liquid slugs 
and vapor plugs in the sub-surface tunnels. Obser- 
vations by Nakayama et  al. [8], Arshad and Thome 
[9], Chien and Webb [5] confirm the Nakayama et  al. 
[6] model is correct for saturated boiling. 

Nakayama et  al. [6] assumed that the total heat flux 
from structured surfaces is the sum of the following 
two parts. 

(1) Tunnel heat flux (q't'n) due to to the thin-film 
evaporation inside the tunnels of the enhanced 
surface. 

(2) Sensible heat flux (q~x) due to the external con- 
vection induced by bubble agitation. 

Both fluxes are based on the projected surface area. 
This is expressed by the following equation. 

q" = qtun + q~x. (1) 

Their dynamic model is based on the sequence of 
events during one complete cycle of bubble growth 
and departure. According to the tunnel pressure and 
bubble growth conditions, they divided one bubble 
cycle into three phases : 1. pressure build-up phase, 2. 
pressure reduction phase, 3. liquid-intake phase. The 
temporal variation of the liquid meniscus thickness 
during a bubble cycle was ignored in their model. 

In the Nakayama et al. [6] model, the external con- 
vection heat flux does not include the bubble fre- 
quency and bubble departure diameter. Ayub and 
Bergles [10] used the empirical Nakayama et  al. [6] 
external heat flux model, which requires a correlation 
of the nucleation site density, and assumed the tunnel 
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NOMENCLATURE 

A surface area [m 2] 
/ttu n total surface area inside tunnels 
A m meniscus surface area [m 2] 
b constant used in equation (23) 
Bo bond number, Bo = [d2p(pl-pv)g]/a 
c empirical constant in the external heat flux, 

dimensionless 
heat capacity [J (g-K) - 1] 
empirical constant of the bubble departure 
diameter, dimensionless 
Hamaker constant [J] 
empirical constant in the Rm. i correlation 
(kg s-1)1.771/(N0.512 ml.35s K 1.882) 
empirical constant for the tunnel heat transfer 
rate in waiting period [cm] 
empirical constant used for the model of 
bubble growth period, dimensionless 
bubble departure diameter [m] 
bubble departure diameter from the 
experimental data [m] 
bubble departure diameter predicted by the 
present model [equation 09)] [m] 
pore diameter [m] 

heat transfer rate to a meniscus [J s-1] 
bubble frequency [s- 1] 
bubble frequency from the experimental data 
Is-q 
fins per meter 
bubble frequency predicted by the present 
model [s- i] 
buoyancy force IN] 
surface tension force [N] 
acceleration due to gravity [m s -2] 
heat transfer coefficient [W (m2-K)-l] 
tunnel height [m] 
latent heat [J kg-~] 
thermal conductivity [W (m-K)- l] 
thermal conductivity of liquid [W (m-K)- l] 
tunnel length [m] 
slope of P~ vs. T~ (m = dP/dT) 
vapor mass [kg] 
mean square deviation 
exponents 
exponents used in the AAl,cy c correlation, 
dimensionless 

n~ nucleation site density [1 m -z] 
Arm number of menisci exist in each tunnel 
P pressure [Pa] 
Pf fin pitch [m] 
PI liquid pressure [Pal 
Pp pore pitch [m] 
Pr Prandtl number, dimensionless 
P~ pressure of the saturated pool liquid [Pa] 
Pt tunnel pitch [m] 
P~ vapor pressure [Pa] 
q" heat flux [W m -2] 
q~HF dry-out heat flux [W m -2] 
q~'~,utR external heat flux defined by equation (29) 

tWm -~] 
q~ external heat flux [W m -2] 
q~p total heat flux from the experimental data 

[w m -~] 
q~rod total heat flux predicted by the present model 

[Wm -~] 
q~'~ tunnel heat flux [W m -2] 
Q~b latent heat for a departing bubble [J] 
Qm heat evaporated from liquid menisci [J] 
Q:, heat evaporated from liquid menisci in a 

bubble cycle [J] 

Otun total latent heat evaporated in the tunnel 
during a bubble cycle, equation (10) [J] 

r radius of meniscus interface curvature [m] 
R radius [m] 
Rb tunnel base radius [m] 
Rg gas constant [J (g-K) - ~] 
R m meniscus radius [m] 
Rm.A meniscus radius at Section A-A (Fig. 5) [m] 
Rm,B meniscus radius at Section B-B (Fig. 5) [m] 
Rm.~ meniscus radius at the beginning of a bubble 

cycle (Fig. 1) [m] 
Rm,g meniscus radius at the beginning of the growth 

period (Fig. 1) [m] 
Rm. e minimum meniscus radius at the end of a 

bubble cycle (Fig. 1) [m] 
R,~ non-evaporation meniscus radius, defined by 

equation (2) [m] 
Rp pore radius [m] 
s coordinate along the liquid-vapor interface 
sg surface gap width [m] 
t time [s] 
ta, tb, to, td periods during bubble growth shown in 

Fig. 1 
T temperature [K] 
Tt liquid temperature [K] 
Ts saturation temperature [K] 
Tv vapor temperature [K] 
Tv~ vapor temperature at the end of waiting period 

[K] 
Tvo vapor temperature in the tunnel at the 

beginning of the waiting period [K] 
Tw wall temperature [K] 

reference wall temperature, shown in 
equations (25) 

u velocity of the liquid in the tunnel [m s- l] 
u ..... average liquid velocity in the s direction 

[m s -l] 
u ..... average liquid velocity in the x direction 

[m s-q 
Vb bubble volume [m 3] 
Vt tunnel volume (V t = L .  Wt'HO [m 3] 
V~ vapor volume [m 3] 
Vvl volume of the vapor at the end of the waiting 

period [m 3] 
Vvm average volume of the vapor during the 

waiting period [m 3] 
W~ tunnel width [m] 
x coordinate along the tunnel length 
y coordinate normal to the liquid-vapor 

interface. 

Greek symbols 
ct half angle of the bubble center to pore as 

defined in Fig. 3, degree 
3 liquid film thickness [m] 
3m meniscus thickness [m] 
3.e non-evaporation liquid film thickness [m] 
AAj,cyc change of liquid cross-section area during a 

bubble cycle [equation (31)] [m 3] 
APbr break through pressure (APbr = 4a/dp) [Pa] 
AQm change of evaporation heat during a bubble 

cycle [J] 
At difference of time [s] 
Ate liquid intake period [s] 
At e bubble growth period [s] 
ATo difference of the tunnel temperature during the 

waiting period Is] 
A T,~ difference of the saturation and the vapor 

temperatures (Tv-T,) [K] 
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Atw bubbte waiting period [s] 
AT, s difference of the saturation and the tube wall 

temperature [K] 
A V{~q change of liquid volume during one time step 

[equation (12)] [m 3] 
0 contact angle, defined in Fig. 3, degree 
# viscosity [kg (m 2 s)-]] 
/tt viscosity of the liquid [kg (m 2 S) -1] 
Pl liquid density [kg m -3] 
p~ vapor density [kg m -3] 
Pyre average vapor density during the waiting 

period [kg m -3] 
a surface tension [N m -l] 
~b angk~ defined in Fig. 2 
t3 partial differential. 

Subscripts 
b bubble 
ex external 
exp experimental 
g growth period 
1 liquid 
m meniscus 
ne non-evaporation 
new index for a new time step in equation (11) 
old index for an old time step in equation (I 1) 
p pore 
pred prediction 
s saturation 
v vapor 
w tube wall. 

heat transfer rate is a constant. This approach does 
not account for the temporal variation of heat transfer 
in the tunnel. As discussed by Haider [7], the bubble 
frequency and departure diameter are important fac- 
tors for external heat flux. Haider and Webb [11] 
have formulated an external heat flux model based on 
transient micro-convection, which accounts for the 
bubble diameter and frequency. Chien and Webb [4] 
show applicabili~Ly of this model to the present struc- 
tured surfaces. 

The present dynamic model accounts for the tem- 
poral evaporation rate variation inside tunnels by ana- 
lyzing meniscus thickness, bubble departure diameter, 
bubble growth, and the transient convection outside 
the tunnels. 

PHYSICAL MODEL 

The total heat flux can be separated into two parts, 
tunnel heat flux (q't'n) and external heat flux (q'.'x) as 
given by equation (1). The heat transfer rate in the 
tunnel is governed by evaporat ion of liquid menisci. 
The external heat flux is contributed by transient con- 
duction and convection caused by the departing 
bubbles. 

A bubble cycle includes three periods : waiting period 
(Atw), bubble growth period (Atg) and liquid intake 
period (Ate). 

Boiling process 
Figure 1 shows the process of evaporation in the 

tunnel during a boiling cycle. A bubble cycle includes 
the following th:ree periods : 

(1) Waiting period (At,0: in this period, liquid is 
evaporated in the tunnel. However, the vapor is 
constrained inside the tunnel by the surface ten- 
sion on the pore. Bubble embryos protrude from 
the pores when the vapor pressure is greater than 
the break through pressure of the pore 
(APbr = 4tr/dp). Figure l(a) and (b) show the 
beginning and the end of the waiting period, 
respectively The liquid vapor interface is shown 
by the solid line. The radius of the meniscus 

decreases from Rm,i at the beginning of the cycle 
[Fig. l(a)] to Rm,g at the end of this period [Fig. 
l(b)]. During this period, the tunnel is filled with 
vapor except for the liquid menisci in the corners. 

(2) Bubble growth period (At,) : in this period, vapor 
passes through surface pores and increases the 
bubble radius. Bubble growth is controlled by the 
inertia force of the liquid surrounding the bubble 
and the superheated vapor generated in the 
tunnel. The basis of this assumption is discussed 
in Chien and Webb [4, 5]. At the beginning of this 
period [Fig. l(b)], vapor embryos having radius 
R = dr/2, protrude from surface pores. Because 
the liquid in the tunnel evaporates, the radius of 
the meniscus changes from Rm,, to Rm,e. Note that 
the effective evaporation temperature increases as 
the meniscus radius decreases, because the surface 
tension on the menisci increases the saturation 
pressure of the liquid menisci. No evaporation 
will occur on the meniscus if the elevation of satu- 
ration temperature due to capillary pressure (a/R) 
of the meniscus equals the wall superheat. There- 
fore, the meniscus radius at the end of this period, 
R .... should be no less than non-evaporation 
radius, R,~, defined by 

R°o - a ~ . s  (2) 

At the end of this period [Fig. l(c)], bubbles hav- 
ing radius R = db/2 depart from the surface pores. 
The present model also assumes that the bubble 
shape is spherical before a bubble departs. 

(3) Liquid intake period (Ate): after the bubble 
departs, liquid flows into the tunnel, and is 
retained in the corners. In a very short period 
after the bubble departs, the pressure in the tunnel 
is lower than that of the liquid pool. Therefore, 
liquid flows into the tunnel during this liquid 
intake period. At the end of the liquid intake 
period, the radius of the meniscus equals Rm.i as 
shown on Fig. l(d). The surface pore and tunnel 
dimensions control the amount of the liquid in 
the tunnel and the liquid meniscus radius. As 
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Fig. 1. Process of evaporation in the subsurface tunnel and bubble growth. 
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observed by Nakayama et al. [8], and Chien and 
Webb [4], this period is much shorter than the 
other two periods. Therefore, this period is 
neglected in the calculation of bubble frequency. 

Assumptions for tunnel heat transfer 
(1) The tunnels are vapor filled, except for liquid 

menisci in the corners. 
(2) The distribution of the liquid menisci is uniform 

along the tunnel length. 
(3) The latent heat of the vapor bubbles is by evapor- 

ation inside the tunnels. Evaporation of the micro 
layer above the subsurface tunnel is neglected. 

(4) The evaporation rate is predicted by one-dimen- 
sional conduction heat transfer from the liquid 
meniscus region. 

(5) For a rectangular tunnel cross-section, liquid 
menisci exist in each of the four corners. For  cir- 
cular fin base tunnels, only two liquid menisci 
occur in the corners--near the fin tips. 

(6) For  high thermal conductivity fins (e.g., copper), 
the wall temperature is constant over the fin 
height. 

MATHEMATICAL MODEL 

Formulation of  tunnel heat flux 
Based on the above physical model, the tunnel heat 

flux is the produce of the latent heat transferred at the 
menisci during a bubble cycle and the bubble 
frequency, as given by 

q~'~nAtun = (Qm)f (3) 

where Q~, is the latent heat from menisci in one bubble 
cycle. Assuming one-dimensional heat conduction in 
the liquid, the heat flux is given by 

q. kl 
= ~-(Tw - T,). (4) 

In equation (4), Ts is the saturation temperature. 
When the liquid meniscus becomes very thin, the satu- 
ration temperature elevates because of the disjoining 
pressure and capillary pressure (a/R). The elevation 
of saturation temperature due to the capillary pressure 
is significant when the meniscus radius (Rm) is very 
small. DasGupta et al. [12] assumed a power-law 
dependency of the disjoining pressure on 3. Experi- 
mentally, they found the disjoining pressure = (CH/fi 3) 
for R-I13, where the Hamaker constant (CH) is 
2.0 x 10 -12 J for R-113. Accounting for the effect of 
capillary pressure and disjoining pressure on the liquid 
menisci, the equivalent saturation temperature (Ts), 
in equation (4) is given by 

?s= Z~( l+~r/R+c"/~3]'irgp, / (5) 

The present model assumes CH = 2.0 x 10 -~2 J for all 
the refrigerants in the present work. The authors also 
found that the differences of prediction on total heat 
transfer coefficient (h), by changing Cr~ = 2.0 × 10 - l l  
to CH = 2.0× 10 -13 J, are less than 2%. 

The latent heat transfer rate at the menisci (dQr,/dt) 
is given by 
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' ~,C = AB x sec~b 

i R~+Sm = (R~+5..) sec~ 
I IA 

~ 1  Liquid 
Uenisou  I 

Fig. 2. Liquid meniscus thickness. 

dQm = ATws IAm _k' q~) dA (6) 
dt J0 fro(t, 

where 6m(t, (~) is the local thickness of the liquid men- 
iscus, and Am is the meniscus surface area measured 
from the interface per unit tunnel length. From the 
geometric analysis (Fig. 2) assuming Rm is inde- 
pendent on ¢, the local liquid thickness on the menisci 
is given by 6m(~b) = (Rm+6ne) sec ( ~ b ) - R  m for given 
radius Rm and angle ¢. Because Rm is a function of 
time (t), 6m = 6m(t, q~), and is given by 

6m(t , q~) =: [Rm(t) + 6he ] sec (~b) - R m ( t  ) (7) 

where Rm is the liquid meniscus radius, and angle ~b is 
defined in Fig. 2. The non-evaporation film thickness 
(6,~) is calculated by 

= (  CuT~ x~ 1/3 
3,,< \p.ifg(T~- T,)) " (8) 

The liquid menisci radius Rm changes during the boil- 
ing process as shown on Fig. 1. The non-evaporation 
film thickness 6,,, is much less than R m. In equation 
(6), the surface area increment, dA = L" Nm" Rm" d~b, 
where ddp is small angle increment, Nm is number of 
menisci existing in each tunnel, and L is the total 
tunnel length. From equations (6) and (7), the total 
latent heat transfer rate is given by 

dQm _ A T~ r2LNm 
dt L 

kl 
x f~/4[Rm(t)+6.e(-~]s(q~)__Rm(t~Rm(t)d¢]. (9) 

The total latent heat in the tunnel during one bubble 
cycle is given by 

I 'lfdQm dt (10) 
Qt,. = Jo dt 

where dQm/dt is given by equation (9). The integra- 
tions in equations (9) and (10) were numerically calcu- 
lated using small increments of time (t) and angle (¢). 
The Rm(t) is updated to a new value, R ... . . .  for each 
new time step. From a geometric analysis, the R . . . . .  
is given by 

liq (11) 
R . . . . .  = R2m'°'a+ L N m ( 1 - n t 4 )  

where AV, q is the change of liquid volume during a 
time step. From mass and energy balances, one finds 
mVliq = AQm/(ifgpl). The Rm,ola is the meniscus radius 
of the previous time step. From equation (9), the 
volume of liquid A V~jq evaporated on the menisci dur- 
ing one time step (At) is given by 

= At 2LNmATwS 
A Vii q 

lfgpj 

~.14 kl 
× 

J0 [Rm(t) +6ne(t)]sec (t~)--Rm(t) 
Rm(t) dek. (12) 

This calculation for integration of equations (9)-(12) 
starts from the initial meniscus radius at the beginning 
of the bubble cycle [Rm = Rm,i on Fig. l(a)] and step- 
wise decreases for a small time step (At) until 
Rm - Rm,e [Fig. l(c)].' 

The initial meniscus radius (Rm.i) depends on the 
amount of liquid that flows into the tunnel during a 
bubble cycle. From geometric analysis, Rm,~ is given 
by 

l,¢yc (13) Rm,~= R L  + N~(~2~_~/4 ~ 

where AAl,cyc is the change of the cross section area of 
the liquid menisci during a bubble cycle and Arm is the 
number of menisci per tunnel. Detailed prediction of 
Rm,i or AAl,cyc requires complex analysis involving the 
nucleation site density and liquid flow rate in the liquid 
intake period. The authors chose a simplified method, 
which involves correlation of AAI,cy c based on exper- 
imental data in Chien and Webb [1-3, 13]. The devel- 
opment of a correlation for AA~,¢yc will be discussed 
later. 

Modeling bubble departure diameter 
From a force balance, Nakayama et al. 

developed an empirical correlation, given by 
[6] 

[ 2a V n 
db = Cb \ - p  g)i(P,--J-I (14) 

to predict the bubble departure diameter on structured 
surfaces. Their analysis assumed that the buoyancy 
force equals the surface tension force in an opposite 
direction, and neglected the inertia force of vapor 
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bubble. In equation (14), the empirical constant Cb 
was established from the Nakayama et al. [6] exper- 
imental data. For R-11, they chose Cb = 0.42, while 
for water Cb = 0.22. Their force balance analysis is 
supported by the analysis on plain surface by Kolev 
[14], who showed that only static mechanical equi- 
librium governs the bubble departure for plain 
surfaces. 

Haider [7] proposed the following expression for 
the constant Cb in equation (14), 

2a g)-l/6 
Cb=(3SgSinO) ~/3 (p,~--p~) (15) 

where 0 is the contact angle. However, the contact 
angle 0 must be established. 

According to the Chien and Webb [4, 5] obser- 
vations using a high speed video camera on the boiling 
tests of methanol, R-11 or R-123, the typical bubble 
shape is spherical on the structured surfaces. We 
assumed that the bubble shape above an active pore 
is spherical, and that the bubble attaches to the surface 
pore during the bubble growth. By a geometrical 
analysis, the angle a equals angle 0 as shown in Fig. 
3. Hence, the contact angle 0 can be evaluated by 

0 sin , ,6 ,  

The buoyancy force on the bubble is given by 
Fa =(pl--pv)gVb, where Vb is the volume of this 
bubble, given by 

d~ f . . . . .  cos(P) sin2(0)'X 
V b = n ~  '+c°s(O)+ 5 ). (17) 

The surface tension force on the pore is given by 
F~ = andp sin(0). The balance between buoyancy and 
surface tension forces gives 

adp sin(P) = (p, -- p~)g~ 

x (l  +cos(o)+ C°s(O)2inZ(O) ). (18) 

One can rewrite equation (18) in an explicit form, 
given by 

FBo + x/Bo 2 + 2304(96/Bo - 3)]'/z 
db= L - ~ j d, 

(19) 

where Bo = [d~(p~-pv)g]/a. Therefore, the bubble 
diameter db can be predicted by equation (19) with no 
empirical constant. The predictive ability of equation 
(19) is shown later. 

Modeling bubble frequency 
As described previously, a bubble cycle includes 

three periods. The liquid intake period is much shorter 
than the other two periods. Therefore, the authors 
assume the bubble frequency is the inverse of the 
summation of the waiting period (Atw) and the bubble 
growth period (Atg). The waiting period and the bub- 
ble growth period are modeled separately as described 
by the following two sections. 

Waiting period. Nakayama et al. [6] analyzed the 
waiting period. From mass balance and energy bal- 
ance equations, they wrote 

1 dQt,m dmv dpv dV~ 
ifg dt dt V ~ - + p v  ~ .  (20) 

Nakayama et al. [6] assumed (dQtun/dt) = 
Ct,ki (Tw- Tv), where C,  is a time independent empiri- 
cal constant. They applied the equation of state and 
the Clausius-Clapeyron equation, and showed 

[pv(ifg-RgT, o), fTw-- Tvo'~ 
AtwCtlkl = Vvmifg | ~ i n / ~ /  

L RgTvo \ w-- vlJ 

i!i!iiii~it~!iiiii~i!i!i~i!i!i~i~i!iii~i!i!i!i!i!iii!i!i!i!iiiii!iiiii!iii!iii!ii i 

VAPOR 

Fig. 3. Bubble growth on a surface pore. 

(Vv'll (=l) 
+ A-~,~ In \ V, J l 

where the vapor temperature (Tv), density (Pv) and 
volume (Vv) are linearized. They assume Tvo = Ts, and 
Vv = Vt at the beginning of the waiting period. At the 
end of the waiting period, Tvl = Ts+4a/(dp'm), and 
Vv = Vt + n" d3 " L/(12" Pp" Pr). The authors found 
that the changes of the three variables (Tv, p~, and V,) 
are small during the waiting period. Therefore, their 
manipulations on Tv, pv and Vv are valid. However, 
the tunnel heat transfer heat (dQtu,/dt) should be time 
dependent because the meniscus radius is changing 
during the bubble cycle. Therefore, the authors pro- 
posed that equation (21) be replaced by equation (22). 
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fo a" dQt~n/dt [p~ (if_g -- Rg T~o) d t =  Vvmifg 
L R~r~o 

{?w - Tvo'~ pv / V,~\] ×lnt )+ (22) 

The right-hanoi side of equation (22) can be 
explicitly calculated for a given wall superheat ATws. 
As noted previously, the present model accounts for 
the temporal varmtion of (dQt,n/dt), by formulating 
the liquid thickness at each time step [equation (9)]. 
In the present model, the left-hand side of equation 
(22) was calculated using equations (9)-(12) with 
small time step increments (dr) from the beginning to 
the end of the waiting period (Atw), until it equals the 
right hand side of equation (22). 

Bubble growth period. For a plain surface, the bubble 
growth rate is controlled by inertia force, and the 
bubble growth is linearly proportional to time (R ~ t) 
at the early stage. Then, the growth rate is dominated 
by evaporation at the interface, which causes vapor 
addition to the bubble, and the bubble growth is char- 
acterized by, R .~ ?12 (Miyatake et al. [15]). Mikic 
and Rohsenow [16] have developed an equation for 
calculating bubb]Le growth rate on plain surfaces, in 
the inertia and heat transfer regimes for pure refriger- 
ant, and was extended by Miyatake et al. [15] for 
prediction of binary mixture. 

As discussed by Chien and Webb [4], the bubble 
growth mechanism on the structured surface is differ- 
ent from that on a plain surface. For  a structured 
surface, the evaporation on the bubble interface is not 
important because the vapor is mainly supplied from 
the subsurface tunnel. Therefore, inertia controlled 
bubble growth dominates the entire bubble growth 
period. For  inertia controlled growth, Mikic and 
Rohsenow [16] assumed the growth of the bubble is 
controlled by the increasing vapor pressure of the 
vapor inside the bubble, and balanced by the inertia 
resistance and the surface tension on the liquid-vapor 
interface. They showed that the bubble growth is given 
by 

(23) 

where b = 2/3 for a bubble growing in an infinite mass 
of liquid, or b = n/7 in equation (23) for a spherical 
bubble growing attached to a surface. The viscous 
force is neglected in the above equation. Using the 
Clausius--Clapeyron equation to relate the pressure 
difference (Pv-P~) to the corresponding temperature 
difference, and neglecting the pressure drop across the 
liquid-vapor interface (2a/R), Mikic and Rohsenow 
[16] changed equation (23) to 

Tv--T, 
(24) 

As indicated by Mikic and Rohsenow [16], Tv may 

be any value between Ts and Tw, depending on the 
conditions presented in the considered growth. 

Nakayama et al. [6] modified equation (23) to cal- 
culate the bubble growth period for structured 
surfaces. They concluded that (Pv-P~) is negligible, 
based on the assumption R >> dp/2. However, the 
present authors find that the bubble growth period is 
four times greater than Nakayama's  prediction. This 
is because bubble starts at R = dp/2, as compared to 
the Nakayama et al. [6] assumption of R >> do~2, 
which we feel is inappropriate. We also find that the 
bubble growth period increases as the wall superheat 
decreases. Therefore, the (Pv-P~), which depends on 
the wall super heat, is small but is not negligible. 

For  the structured surface, the pressure drop across 
liquid-vapor interface (2a/R) should not be neglected, 
and (Pv-Ps) should be of the same order of the 
'breakthrough pressure' (4a/dp). It is also reasonable 
to assume that the ( P v -  Ps) increases as the wall super- 
heat (Tw- Ts) increases. Therefore, one gets 

(T,,-- Ts) -2a/(mR) ,12 dR_.~ _ \7(~irgpvAT,,,s.)'lZ ] T - w ~  ) 

where 

Tv-- T,-2~r/(mR) = k ~ _  T~] ~ 

(25) 

where m = dP/dT at Ts, and T~ is a reference wall 
temperature. At  Tw = T~w, the vapor superheat 
ATvs = 4a/(mdp). The authors linearized R in the 
second term on the right side of equation (25) and get 

where 

(dR) = (Trifgp~AT~,) '/2 (db-dp) '/2 
-dt \7 p, Ts ] Ctg\db+dp] (26) 

= I 1/2 

The Ctg is a dimensionless parameter, which represents 
the slope of vapor superheat vs. the reference wall 
superheat (T~--Ts). Since T~ is an unknown, the 
authors assume Ctg in equation (26) is an empirical 
constant, and find it by curve fitting from the bubble 
growth data [4]. The authors found that Ctg = 0.0296 
best fits the data. Setting the boundary conditions 
for equation (26): R = d~/2, at the beginning, and 
R = db/2 at the end of the growth period, one gets 

Atg=0"0296r~i ~T, (db+dv)l'12 

(27) 

Nucleation site density 
The vapor generated in the tunnel is ejected through 

the surface pores. The bubble diameter and frequency 
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are predicted as discussed above. From an energy 
b a l a n c e ,  q~tun = ifg" V v ° P v  . From a mass balance, one 
can get the nucleation site density (n~) by the following 
equation. 

q'?~. 
n~ - . (28) 

pvirgf (nd3) /6 

External heat flux 
The Haider and Webb [11] model is used for the 

prediction of the external heat flux. They assume the 
heat transfer outside the tunnel is controlled by two 
asymptotes. The first asymptote is the heat transfer 
due to transient conduction (q2x,MR), which was solved 
(Mikic and Rohsenow [17]) as given by equation (29). 

q'e'x,MR = n s Q b u b  = f - -  k l l t d  b d t  
\ YJy=O 

= 2x/~k~p~cpx/fd~,n~(Tw- Ts). (29) 

The second asymptote is due to steady state con- 
vection due to agitation of the departing bubble. 
Haider and Webb [11] show that the external heat flux 
is given by 

. . . .  [ (0"661rC~21'/2 
q~x = qex,MR 1 + \ p~7~- ]  ] (30) 

where the empirical constant of c = 6.42, was curve 
fitted from the Chien and Webb [4] and Nakayama et 
al. [8] bubble formation data. The prediction is within 
_ 25%. As suggested by Haider and Webb [11], this 
constant is universal, and can be used for different 
fluids and geometric dimensions. 

For prediction of external heat flux on structured 
surfaces, the bubble dynamic factors (db,f, n~) needed 
in the Haider and Webb [11] model are given by equa- 
tions (19), (22), (27), (28). 

Prediction procedure 
The present model predicts the total heat flux (q") 

for given wall superheat (ATws) and dimensions 
(db, ep, ef, nt) , by the following procedure. 

(1) Calculate the departure diameter (db) for given 
dp and fluid properties by equation (19). 

(2) Calculate the bubble growth period (Atg) by 
equation (27) for given A Tw~ and fluid properties, 
using db obtained in step 1. 

(3) Calculate the initial liquid meniscus radius, Rm,i 
by equation (13), using a correlation [see equa- 
tion (31)] for prediction of AALcy c. 

(4) Calculate the latent heat transferred in the tun- 
nels during the bubble cycle by integrating equa- 
tions (9) and (10) with stepwise decreasing R m 
from Rm.~ to Rm.o. The At during one increment 
of rm is found by equations (11) and (12). 

(5) Calculate the waiting period (Atw) by equations 
(9)-(12) and (22), and find the meniscus radius 
(Rm.g) at the beginning of the bubble growth 
period. 

(6) Continue the calculation of the tunnel heat flux 
as for the bubble growth period, and calculate 
by decreasing R m for Atw < t < Atw+Atg. 

(7) Sum the tunnel heat flux (q~'n) during the waiting 
period (Atw) and bubble growth period (Atg) for 
given dp, Pp, Pr, Ht, A Tws and fluid properties, 
and get the bubble frequency, f =  1/(Atw+Atg). 

(8) Use equation (28) to calculate the nucleation site 
density (ns) from q[un and db obtained in step 1 
and 2, andfob ta ined  in step 7. 

(9) Calculate the external heat flux (q;'x) by equation 
(30) for a given ATws and db, f,  ns, obtained in 
step 2, 7 and 8. 

(10) Calculate total heat flux q" = q;'x q-q't'un. 

Correlation of AAl,cyo 
The above prediction procedure requires the initial 

meniscus radius, Rm,i. AS given by equation (13), the 
Rm, i is analytically related to Rm.e and AAt.cyc. The Rm, e 
is given by equations (9)-(12) and (22). The AAI,cyc is 
predicted by a correlation. This correlation is obtained 
by curve fitting the R-11, R-123, R-134a, and R-22 
experimental data given in Chien et al. [1-3, 13] to 
obtain experimental Rm, i and AAl,cy c data. The ranges 
of parameters in the data base are listed in Table 1. 

The model assumes the menisci occupy the entire 
tunnel length. When only part of the tunnel is flooded 
(at low heat fluxes), or the meniscus vanishes 
(q" > qDHF), the model will result in over prediction. 

• it Hence, the data for q" < 0.2 qDHF o r  q" > qDHF were 
excluded from the correlation for Rm,i. As discussed 
by Chien and Webb [1, 2] the dry out heat flux, 
q~Hv, is defined as the heat flux where the heat transfer 
coefficient approaches maximum value. Different 
from CHF (critical heat flux), which defines the con- 
dition for the dry out of a plain boiling surface, the 
q~HF defines the dry out condition inside the tunnels 
of structures surfaces. When q " >  qDHF, liquid is 
depleted in the tunnel, and the heat transfer coefficient 
drastically decreases. 

The experimental Rm.~ data base is obtained by 
g u e s s i n g  Rm, i in step 2 of the aforementioned pre- 

Table 1. Range of parameters in the data base 

Reference Fluids dp (mm) Pp (mm) fins m Wt (mm) Ht (mm) 

[1, 2] R11, R123 0.12M?.28 0.75-1.5 1378, 1575, 1968 0.25~0.4 0.5-1.5 
[3, 14] R134a, R22 0.184).28 0.75-1.5 1575, 1968 0.254).33 0.6-1.5 
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diction procedure. Each Rm. i corresponds to a qprea. 

Change Rm, i and repeat step 1-11 until the prediction 
for q" at a given ATw~ agrees with experimental data 
(qpred = q~xp)" The resulting calculated Rm, i data are 
shown in Fig. 4. Then, the experimental AAl,cyc data 
are calculated by equation (13). The next step involved 
developing a correlation for AA,,cyc as a function of 
the geometry, and fluid dependent parameters. 

The AA~,cyc represents the amount of liquid that 
flows into the tunnel during one bubble cycle. The 
understanding of the boiling mechanism from the 
parametric experiments (Chien e t  a l .  [1-3, 13]) pro- 
vide the following information to define the dependent 
parameters in the; correlation of AAI,¢y ¢. 

(1) Geometric parameters: pore diameter (do), pore 
pitch (Pp), tttnnel height (Ht), tunnel width (Wt), 
and tunnel pitch (Pt) are important parameters. 
The present model included these parameters in 
the calculation of tunnel heat transfer and waiting 
period. The dependencies of pore diameter, tunnel 
width and tunnel height are also found in the Rm, i 
correlations. 

(2) Wall superheat (ATws) : more liquid is evaporated 
and generate more bubbles at greater wall super- 
heat ATws. Therefore, the liquid intake activity 
and the AA],cy¢ is dependent on ATw~. 

(3) Fluid properties : because the liquid flows into the 
tunnel through the small surface pores, one would 
expect the liquid flow rate to depend on liquid 
viscosity (#~). The liquid is pulled into the corners 

by surface tension force. Hence, AAl.cyc is also 
dependent on surface tension, tr. 

Based on the above thoughts, the following cor- 
relation for AAl,cyc was found to predict within 19% 
MSD using the Rm, i data shown in Fig. 4. 

' - 2 C R m A T n w ' s d p 2 ( n t " l - W t ) " 3  " 

(31) 

A number of possible correlations are evaluated 
before the best correlation was chosen. The empirical 
constants used in equations (31) are given in Table 2, 
and the units of variables are given in the nomencla- 
ture list. Table 2 is applicable to all fluids and for 
arbitrary geometric dimensions within the range of 
the present experiments, except the 15754).6r tube, 
which has a rectangular fin base. The available data 
are not sufficient to obtain the correlation of Rm. i for 
the rectangular fin base tubes. 

Table 2. Values of the empirical constants using data at (0.2" 
qDHF) < q" < qDHF 

CRm n 1 n2 n3 n4 n5 

4.71E-9 0 .1882  0.609 1.49 1.7712 0.512 
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VERIFICATIONS OF ASSUMPTIONS 

The aforementioned database for Rm,~, calculated 
from experimental data, provides important infor- 
mation to evaluation of the major assumptions in our 
model. 

Thin liquid film on the tunnel walls 
The present model assumes that the evaporation 

occurs only on the liquid menisci in the corners. How- 
ever, one may speculate that thin liquid films also 
exist on the tunnel side walls, and affect the tunnel 
evaporation rate. The evaporation rate is proportional 
to k~/6. A thin film on the side walls will evaporate 
more quickly than the thicker liquid menisci. 
Assuming a uniform liquid film thickness on the side 
wall, Chien [3] found that this film would evaporate 
in approximately 10 -5 s, which is less than 5% of the 
typical waiting period. The predicted waiting period 
agrees with the Chien and Webb [4] data only if the 
amount of liquid evaporated in thin films on the side 
walls is less than 3% of that in the menisci. Hence, the 
authors concluded that any evaporation that occurs in 
thin films on the side walls is negligible compared to 
that evaporated in the menisci. The model includes 
only evaporation of the liquid menisci. 

Liquid spreading inside the tunnel 
The present model assumes that the entering liquid 

is retained in the corners at the fin tips. This assump- 
tion is verified by envisioning the liquid spreading 
process during the liquid intake period as illustrated 
in Fig. 5. 

At the end of a bubble cycle, liquid is drawn into 
the tunnel by inertia force. Then, liquid moves into 
the corners and spreads along the tunnel length by 
surface tension force. Liquid is pulled from point A 
to point B by surface tension force due to the meniscus 
radius variation along the tunnel length (the x-direc- 
tion on Fig. 5). As shown in Fig. 5, the liquid meniscus 
radius at point A (Rm,A) is greater than at point B 

Liquid ~,A 
.... '-, ,,, 

[",, A ,., • ~ \  -\.\ 

Fig. 5. Liquid motion in the corners along the tunnel length. 

(Rm,B)- Using the analysis of Adamek and Webb [18] 
for the liquid-vapor interface surface tension effect, 
Chien [3] showed that the average liquid flow velocity 
along the tunnel length (x-direction in Fig. 5) is given 
by 

where 

1 d p ~  2 
u . . . .  - (32) 

' ~1 dx 3 

dp d(1/r) 
- - ~  - -O* 
dx dx 

where 1/r is the curvature of the liquid vapor interface, 
and x is the coordinate along the tunnel length. He 
assumed a linear variation of meniscus curvature from 
point A (where the curvature radius, Rm,A = Rm,i) tO 
point B (where Rm.B = Rn¢) as shown in Fig. 5. Apply- 
ing typical values of Rm,i and R,e from the exper- 
imental data, he used equation (32) to find u ..... = 800 
mm s- J. Therefore, the liquid can move quickly in the 
x-direction. From a similar analysis, Chien [3] found 
the surface tension induced velocity in the s-direction 
(toward the fin tip) is about 30 mm s -~. Therefore, 
the liquid velocity in the s-direction (toward the fin 
base) is less than the x-direction. This is supportive of 
the assumption of uniform liquid thickness along the 
tunnel length. 

An important consideration in the model is the 
possibility that liquid menisci may also exist at the fin 
base. Liquid entering at the surface pore will be acted 
on by surface tension force, which will tend to retain 
liquid in the small menisci at the fin tip. However, 
liquid inertia will also try to spread the liquid along 
the fin side walls. Once the liquid is on the side wall, 
surface tension force will pull liquid into the corners 
at the fin base. For a rectangular fin base, we believe 
that more liquid will be retained at the fin tip than at 
the fin base. For a circular fin base, the meniscus 
radius is much larger than that at the fin tips, as shown 
in Figs 1 and 6. The fin base radius (Rb) for circular 
fin base tubes is 0.14~0.19 mm as shown in Table 3. 
Hence, the amount of liquid pulled to the fin base will 
be substantially less for a circular fin base than for a 
rectangular fin base. Based on the previous con- 
siderations, the present model assumes that only two 

(a) Circular fin base (b) Rectangular fin base 
Fig. 6. Fin base shapes. (a) Circular fin base (1575-0.6 tube) ; 

(b) Rectangular fin base (1575~).6r tube). 
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Tube (fins m-Ht) 1575-0.6r 15754).6 15754).8 1575-1.5 19684).7 19684).9 

Rb (mm) 0.01 0.19 0.17 0.16 0.15 0.14 

liquid menisci exist for the circular fin base tunnel 
(Nm = 2), and that they are at the fin tip. 

For the case of the tunnel having rectangular fin 
base, the fin base radius (Rb) for the 1575-0.6r tube is 
0.01 mm, which is smaller than the typical meniscus 
radius. Therefore:, two more liquid menisci may exist 
in the corners at the base of the fins. Chien and Webb 
[1] show that a surface having a rectangular fin base has 
higher performance than an identical surface having a 
circular fin base. We believe that this is because of the 
liquid menisci that exist at the fin base. This geometry 
configuration is not addressed in the present model. 

PREDICTIVE ABILITY OF THE PRESENT MODEL 

The present model was used to predict the Chien et 
al. [1-3, 13] data for q" = 20-100% of the q~nF. These 
data include R-I 1, R-123, R-134a and R-22 pool boil- 
ing data on tubular surfaces having a circular fin base 
for heat fluxes between 10-65 kW m -2. The range of 
geometric parameters are shown in Table 1. The 
results are shown in Fig. 7. Figure 7 shows that the 
heat flux is predicted within +33% absolute error 
(MSD = 0.20), except for the dark symbols, at quite 
low heat fluxes. The model over predicted these dark 

points, because some tunnels become partially liquid 
filled and do not generate bubbles at low heat flux. 
These liquid filled tunnels should be considered 'non- 
active'. The effective tunnel inside surface area 
decreases when tunnels are partially flooded. It is poss- 
ible that one may predict the length of the liquid filled 
region as a function of heat flux. However, this was 
not attempted in the present work. 

The present model predicts bubble frequency and 
departure diameter quite well, as shown by Figs. 8 
and 9. As shown in Fig. 8, the model predicts the 
bubble frequencies of Chien and Webb [4] exper- 
imental data for R-123 on four surfaces within + 30% 
absolute error (MSD = 15%). Figure 9 shows the 
error in predicted bubble departure diameter 
(db,pred--db,exp)/db,ex p. The Chien and Webb [4] data 
for R-123 is predicted within + 12% (MSD = 7%). 
Recall that the effect of the heat flux on bubble depar- 
ture diameter is not considered in the model. Figure 
9 shows a quite small effect of heat flux on bubble 
departure diameter. Table 4 compares the exper- 
imental data from Nakayama et aL [8] and the Chien 
[3] data on water, methanol, R-1 l, and R-123. The 
present model was able to predict db for all the fluids 
within + 20%. 
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CONCLUSIONS 

(1) A semi-analytical model is proposed for pool boil- 
ing on structured surfaces having a circular fin 
base. The model assumes evaporation from liquid 
menisci at the top of the fins and is applicable to 

surfaces having a circular fin base and an arbitrary 
combination of dp, Pp, Pr, Hr. It can predict most 
boiling heat transfer data for four refrigerants (R- 
11, R-123, R-134a, and R-22) within +33% (0.20 
MSD). 

(2) Bubble departure diameter and bubble frequency 
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Table 4. Comparisons of predictions and data for bubble departure diameter 

Reference Fluid dp (mm) db.cx p (mm) db.p~ (mm) 

[6] Water at 1 atm 0.1 0.78___0.1 0.78 
[6] Rl l  at 1 atm 0.1 0.7___0.1 0.53 
[3] R 11 at 26.7°C 0.23 0.8 ___ 0.1 0.80 
[3] Methanol, 1 arm 0.23 1.1 _0.1 0.96 
[3] R123 at 26.7°C 0.23 0.77+__0.1 0.76 
[3] R123 at 26.7°C 0.18 0.72+0.1 0.67 

are included in the present model. The predictions 
are within :~-20% absolute error (MSD = 0.07) 
for the bubble departure diameter, and within 
+ 30 absolute error (MSD = 0.15) for the bubble 
frequency. 

(3) The present model  is the first one that includes 
temporal  variation of  evaporat ion rate inside the 
tunnel. 

(4) The initial meniscus radius (Rm,i) was calculated 
using heat transfer data based on the present 
model. By comparing the meniscus radius and fin 
base radius, we concluded that a rectangular fin 
base shape will likely yield greater boiling per- 
formance be, cause of  contributions from meniscus 
evaporation at the fin base. 

(5) The modeling on db,f, ns allowed use o f  the Haider 
and Webb [11] model  for the q~'x term in equation 
(1). 
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